
#RSAC

SESSION ID:

Lenny Zeltser

Analyzing Windows Malware on Linux:
Getting Started Tips and Examples

OST-T08

CISO at Axonius
Faculty Fellow at SANS Institute
@lennyzeltser

#RSAC

How to start the analysis of a suspicious file?

2

If you encounter a suspicious Windows executable, how
can you begin your analysis?

Where can you find the right tools and how should you set
them up?

What process should you follow to determine the nature of
the file and to decide how to continue the investigation?

#RSACLinux can accommodate a wide range of tools for
analyzing malware.

3

Finding, installing, and configuring these tools is tricky.

True to the Unix philosophy, many of the tools are good for
specific tasks, and aren’t general-purpose.

Knowing which tool to use when takes research and practice.

In this session you’ll learn an approach to using Linux-based
tools for analyzing Windows malware.

#RSAC

We’ll use REMnux as our malware analysis toolkit.

4

Based on Ubuntu.

Available from REMnux.org.
Includes hundreds of preconfigured tools.

Popular among malware analysts.

REMnux is to malware analysis as Kali Linux is to pen testing.

#RSAC

You can get REMnux in several ways:

5

Download and import the virtual appliance (OVA)

Install from scratch on a dedicated Ubuntu system:
remnux install

Install from scratch for a cloud deployment (keep SSH enabled):
remnux install --mode cloud

Add to an existing Ubuntu system:
remnux install --mode addon

Run it as a Docker container:
docker run --rm -it -u remnux remnux/remnux-distro bash

#RSAC

6

For our examples we’ll use this malware sample:
ac7cc70030ca937a211a905ed7fa829ac1c299108168a0f9f0337c4e77e37a42

#RSAC

Assess a suspicious file using these steps:

7

1. Examine static properties for an initial assessment and to form
ideas for further investigation.

2. Statically analyze the code to identify malicious capabilities.

3. Explore network interactions to start understanding the
malicious behavior.

This analysis forms the foundation for deeper code-level
research, but that’s outside the scope of this session.

#RSAC

Our approach:

8

Observe the analysis process via live demos whenever possible.

Refer to these slides later, so you can review the materials and
repeat the steps in your own lab.

The slides will include some additional follow-up steps that we
won’t explicitly cover during the session.

#RSAC

#RSAC

Examine Static Properties

#RSAC

Examine Static Properties: General

10

file sample.exe: PE32 executable, PECompact2 compressed

yara-rules sample.exe: HTTP, registry, file operations, overlay
clamscan sample.exe: Win.Malware.Shyape

signsrch sample.exe: RSA SHA1 signature

#RSAC

11

Run freshclam while connected to the internet
to update ClamAV signatures.

#RSAC

Examine Static Properties: PE Files

12

peframe sample.exe: Hashes, sections code and .rsrc, entropy of
.rsrc high, suspicious API references
pecheck sample.exe: Hashes, suspicious API references, overlay

pecheck -g o -D sample.exe > sample.exe.overlay: Extract the
overlay into a separate file

strings sample.exe.overlay: Strings suggest a code signing
certificate, including the “DTOPTOOLZ Co.,Ltd” reference

pestr sample.exe: Nothing we haven’t seen already

#RSAC

13

#RSAC

14

#RSAC

15

#RSAC

16

#RSAC

17

#RSAC

Examine Static Properties: Deobfuscation

18

xorsearch sample.exe http: Strings “CMD.EXE” (XOR key 2A),
“www.we11point.com” (XOR key 56)
brxor.py sample.exe: Longer strings, consistent with xorsearch

bbcrack sample.exe: Another perspective on obfuscated strings
floss --no-static-strings sample.exe: A few strings we haven’t
yet seen (e.g., browser agent, Run registry key, WinExec)

#RSAC

19

#RSAC

Key takeaways from this section:

20

This Sample
API references indicate process and
website interaction capabilities.

Deobfuscated strings reveal URLs,
and WriteFile and WinExec APIs.

High entropy suggests a packer.

Embedded overlay references a
stolen digital certificate.

An unexplained link between this
Shyape sample and Sakula.

Techniques in General

Strings, hash values, and other file
properties are helpful for IOCs.

Deobfuscated strings reveal sensitive
data and API references.

Use your findings as the basis for
OSINT to expand your perspective.

Observations at this points are
theories for validating later.

#RSAC

#RSAC

Statically Analyze Code

#RSAC

Statically Analyze Code: PE Files

22

binee sample.exe: Possible anti-analysis and unpacking APIs
qltool run --rootfs rootfs/x86_windows/ -f sample.exe: Possible
anti-analysis API also shown
capa -vv sample.exe: More visibility into self-defensive capabilities
docker run -it --rm -v ~/:/tmp/files remnux/retdec bash:
Decompile the malicious code
ghidra: Visibility via a disassembler and decompiler, but limited if
the malware unpacks code during runtime

#RSAC

23

First copy the DLLs the sample needs to
/opt/binee-files/win10_32/windows/system32

#RSAC

24

Collect the DLLs using dllscollector.bat and
place them in the rootfs directory on REMnux.

#RSAC

25

#RSAC

26

#RSAC

27

#RSAC

28

You can go to the offsets flagged by capa to explore the code.

#RSAC

Key takeaways from this section:

29

This Sample

Possible anti-analysis measures via
GetTickCount, GetCursorPosition,
and GetForegroundWindow.

Malicious capabilities are likely
concealed by the packer, per
VirtualProtect and PECompact

Techniques in General

Emulate code execution to get
visibility into risky API calls.

Use multiple tools with similar
capabilities for greatest coverage.

Disassemblers and decompiler show
you code, but some functionality will
be unveiled only during runtime.

#RSAC

#RSAC

Explore Network Interactions

#RSAC

Explore Network Interactions

31

renew-dhcp: Renew IP address after switching the VM’s network

fakedns: Respond to DNS queries with IP of the REMnux VM
wireshark: Monitor network traffic

inetsim: Simulate common services, such as HTTP and HTTPS

Infect a Windows lab system with sample.exe on
the same isolated network as the REMnux VM.

#RSAC

32

Your Windows VM should point to your REMnux
VM as its default gateway and DNS server.

#RSAC

33

#RSAC

Key takeaways from this section:

34

This Sample

The behavior confirmed the role of
the domain name and User-Agent.

We also observed the full URL and
additional HTTP details.

Techniques in General

Simulate the services needed by the
sample in your isolated, controlled lab.

Redirect and intercept network
connections.

Validate earlier theories and identify
additional behaviors.

#RSAC

#RSAC

Next Steps for You

#RSAC

Apply what you’ve learned today:

36

Get a copy of REMnux and start experimenting with its tools.

Review the categorized tool listing at docs.remnux.org.
Download these materials and review them:
https://dfir.to/malware-analysis-linux
Consider recreating these steps in your lab; to get a copy of the
malware sample, email me at rsac@zeltser.com.
Keep experimenting with other malware samples.

https://dfir.to/malware-analysis-linux

#RSAC

For further learning opportunities:

37

Watch my earlier RSA talk on malware analysis, which focused
on Windows-based tools: https://youtu.be/20xYpxe8mBg
Repeat the steps demonstrated in that talk.

Review my malware analysis-cheat sheets, including the one
about REMnux: https://zeltser.com/cheat-sheets

https://youtu.be/20xYpxe8mBg
https://zeltser.com/cheat-sheets

