
#RSAC

SESSION ID:

Lenny Zeltser

Evasion Tactics in Malware from the Inside Out

LAB4-W11

VP of Products, Minerva Labs
Author and Instructor, SANS Institute
@lennyzeltser

Download these slides now from:
https://dfir.to/malware-analysis-lab



#RSAC

Our goal is to answer these questions:

2

What are some of the ways in which malware can 
evade detection and analysis?

How can we examine these aspects of malicious 
code in a lab?

What are some of the methods and tools that can 
help us with malware analysis?



#RSAC

We’ll examine two approaches to evasion:

3

Shun analysis tools, such as debuggers and sandboxes, to 
avoid analysis and detection.

Operate mostly in memory to bypass anti-malware measures.

Instead of merely discussing these topics, we’ll 
explore them by turning malware inside out.



Session Logistics

4



#RSAC

If you followed instructions prior to this session to set 
up your lab:

5

You can perform the exercises in your Windows VM.

You’ll be infecting your VM with real-world malware at your own 
risk, so make sure the VM is isolated:
– It should be on a host-only network, not connected to the Internet

– It shouldn’t have any folders shared between the VM and your host

Please allow people at your table who don’t have a working VM 
to watch over your shoulder and otherwise collaborate with you.



#RSAC

If you don’t have a working VM that you can infect:

6

You can work with people at your table you have the VM.

You can look at the screenshots I inserted into these slides, 
which you can access from your laptop or phone right now.

You’ll also be able to review these materials afterwards to 
perform analysis in your lab after the session.

Download these slides now from:
https://dfir.to/malware-analysis-lab



#RSAC

Quiz Time!

7

Q: Will we be working with real-world malware that can 
seriously damage your system if it manages to scape?

A: YES

Q: Will you blame the facilitators or conference organizers if 
something bad happens to your laptop during these exercises?

A: NO

If you decide to run malware, do so inside your 
virtual machine, not on your actual laptop!



Shun analysis tools to avoid 
detection.



#RSAC

Malware can extend its half-life by avoiding analysis.

Don’t infect the system if artifacts of hostile tools exist.

Look for debuggers and other tools used by researchers.

Check whether executing in an automated analysis sandbox.



#RSAC

Example: UIWIX Ransomware

10

UIWIX:

Used the same exploits as WannaCry for propagating.

Tried to evade analysis tools, unlike WannaCry.

How was UIWIX protecting itself from the analysts?



#RSAC

Start by looking at the static properties of UIWIX.dll.

11

Extract UIWIX.dll from malware.zip (password: malware19).

Load UIWIX.dll into PeStudio.

Check the dependencies by looking at “libraries” and “imports.”



#RSAC

The dependencies often indicate which Windows APIs 
the specimen wants to access, revealing its capabilities.

12

UIWIX:

Conceals most of its dependencies by not including them 
in the imports table.

Needs them during runtime to interact with its 
environment.

Will resolve them during runtime prior to executing them.



#RSAC

Look at the “strings” area of UIWIX.dll in PeStudio.

13

As you scroll through the listing, which strings appear suspicious?



#RSAC

Note the string IsDebuggerPresent, which represents the 
name of a Windows API call.

14

Search the web from your physical host or phone to find 
Microsoft’s documentation for IsDebuggerPresent.



#RSAC

Microsoft states that IsDebuggerPresent:

15

“Determines whether the calling process is being debugged.”

Returns 0 if the process is not in a debugger.

Returns a non-zero value if the debugger is present.

This is one of many techniques malware can use to determine 
that it’s being analyzed.



#RSAC

We know UIWIX will probably call IsDebuggerPresent, 
but we don’t know from where.

16

We can load UIWIX.dll into a debugger—we’ll use x32dbg.

We’ll direct the debugger to set a breakpoint on Microsoft’s 
IsDebuggerPresent function.

We’ll then run UIWIX in the debugger to reach the breakpoint 
and examine the code where IsDebuggerPresent is called.



#RSAC

Load UIWIX.dll into the x32dbg debugger.

17

The debugger will pause at the beginning of the specimen, giving 
you a chance to look around and set breakpoints.



#RSAC

Set a breakpoint on IsDebuggerPresent.

18

Type “SetBPX IsDebuggerPresent” in the Command window at 
the bottom of the debugger, then press Enter.

Be sure to specify the proper case for the name of the API call.



#RSAC

Run the specimen in the debugger (F9).

19

The malware will run, then pause at your breakpoint:



#RSAC

You’re now at the start of Microsoft’s IsDebuggerPresent 
function, which you don’t want to debug.

20

Remove the IsDebuggerBreakpoint, which you don’t need 
anymore.

To do that, press F2 or right-click on the line where you’re 
paused and select Breakpoint > Toggle.



#RSAC

Let’s get to the code that might be worth examining.

21

Direct the specimen to execute IsDebugerPresent and pause 
after returning to the malware author’s code.

To do that, click Debug > Run till user code (Alt+F9)

Once the specimen pauses, scroll up one line in the debugger.



#RSAC

Functions typically store their result in the EAX register.

22

Note that UIWIX just returned from IsDebuggerPresent.

Look at the value in the EAX register in the top right corner.

Did the specimen detect us?

Yes: EAX contains 1.



#RSAC

The specimen can now react to its “awareness” of 
being analyzed.

23

UIWIX will terminate itself just a handful instructions later, 
because it discovered it’s being debugged.

You could bypass this defensive measure by double-clicking the 
EAX register and changing its value to 0.



#RSAC

Malicious code can detect the debugger in many ways.

24

The specimen can call OutputDebugString, which returns a valid 
address only if it’s being debugged.

Other APIs include CheckRemoteDebuggerPresent, 
NtQueryInformationProcess, etc.

Instead of calling IsDebuggerPresent, malware can manually 
check the BeingDebugged bit in its memory space (PEB).



#RSAC

ScyllaHide can automatically conceal the debugger.

25

In x32dbg go to Plugins > ScyllaHide > Options.

Enable the “Hide from PEB” options and click OK.



#RSAC

What have we just learned?

26

How static analysis (PeStudio) helps you start the investigation.

How malware can detect your debugger.

How you can bypass such defensive code with the help of a 
debugger (x32dbg).

How you can use the debugger to intercept API calls.



#RSAC

Let’s examine another way malware can spot the 
security tools it’s designed to avoid.

27

The Windows API GetModuleHandle:

Lets malware locate an undesirable DLL in memory.

Accepts the name of the DLL as the parameter.

Returns zero if the DLL was not found

Returns a non-zero value if the DLL was found, which signals to 
the specimen that the security tool is active.

Many security tools inject their DLLs into local processes.



#RSAC

Restart UIWIX in preparation for the next step.

28

If you’ve already enabled ScyllaHide, so you don’t need to 
manually bypass debugger detection.

You’ve already removed the IsDebuggerPresent breakpoint, 
since you don’t need it anymore.

Restart UIWIX in x32dbg by selecting Debug > Restart.

The specimen will pause at the beginning of its code.



#RSAC

Set breakpoints on GetModuleHandle variations.

29

In the Command window at the bottom of the debugger type:

SetBPX GetModuleHandleA

SetBPX GetModuleHandleW

Add both because you don’t know which one will be called.



#RSAC

Run the specimen in the debugger (F9).

30

The malware will run, then pause at GetModuleHandleA:



#RSAC

Which DLL is UIWIX trying to locate?

31

Glance on the right of the debugger to look at the parameter the 
specimen is passing to GetModuleHandleA.

It’s normal for code to look for kernel32.

Let the specimen to continue running until the next breakpoint.



#RSAC

UIWIX pauses on GetModuleHandleA again.

32

If the specimen didn’t pause, then check whether you’ve enabled 
ScyllaHide and redo this exercise.

This time, the specimen is trying to locate SbieDll.dll.

Why might UIWIX care about SbieDll.dll?

What software uses this DLL? Search the web if you’re uncertain.



#RSAC

UIWIX is looking for security tools.

33

SbieDll.dll is used by the sandboxing app Sandboxie.

If you allow the specimen to continue running, you’ll see it 
attempts to locate other security DLLs inside its own process:
– api_log.dll and dir_watch.dll: SysAnalyzer dir_watch.dll

– pstorec.dll: Probably ThreatAnalyzerwpespy.dll

– wpespy.dll: WPE Pro

– vmcheck.dll: Virtual PC

– VBoxHook.dll and VBoxMRXNP.dll: VirtualBox



#RSAC

Malware often avoids infecting the system if it 
encounters the software it considers hostile.

34

Evasive malicious programs can shun:

Debuggers and other tools used for interactive analysis

Sandboxes used for automated analysis

Specific anti-malware software that the malware author 
determined to be good at detecting the specimen

Malware can look for undesirable DLLs, processes, windows, 
registry keys, files, mutex objects, etc.



#RSAC

What have we just learned?

35

How malware can detect active security tools.

How you can use a debugger to investigate API 
calls that interest you.

How you can examine parameters that the API 
calls receive.

For additional suspicious API names and other tips see:
https://dfir.to/reversing-tips



Operate mostly in memory to bypass 
anti-malware measures.



#RSAC

Memory is the weak spot of many anti-malware tools.

37

The attacker crafts the initial malicious file to appear legitimate.

The specimen extracts its malicious code into its own memory 
space or injects it into other processes.

Such “fileless” techniques help evade detection and analysis.



#RSAC

Example: Kovter Multipurpose Malware

38

Kovter avoided placing malicious artifacts on the file system.

It extracted encrypted or obfuscated code from the registry, 
keeping it solely in memory of trusted processes.

JavaScript PowerShell Shellcode Payload



#RSAC

Kovter’s JavaScript launched PowerShell to run the 
shellcode, which it extracted from the registry.

39

The PowerShell script used VirtualAlloc to place decoded 
shellcode in memory of powershell.exe.

The script called CreateThread to execute the shellcode in a new 
thread of powershell.exe.

The thread spawned a trusted program (regsvr32.exe), injecting 
the decrypted malicious code via Process Hollowing.



#RSAC

A few questions for you to answer:

40

What other names are synonymous with Process Hollowing?

What are some of the other malware families that used 
Process Hollowing to evade detection?

Search the web and talk to fellow session attendees to find 
the answers.



#RSAC

Possible Answers:

41

What other names are synonymous with Process Hollowing?
– RunPE

– Process Replacement

What are some of the other malware families that used 
Process Hollowing to evade detection?
– Variants of Carbanak and Trickbot come to mind

– More names at https://attack.mitre.org/techniques/T1093



#RSAC

What have we just learned?

42

Malware can split malicious logic across multiple processes to 
evade detection.

Once running on the system, malware can misuse Windows 
features to inject code—no exploits necessary.

You can identify malicious behavior by paying attention to API 
calls used for memory interactions, such as VirtualAlloc.

Other injection APIs include VirtualAllocEx, 
WriteProcessMemory, CreateRemoteThread



#RSAC

Let’s look at another example of in-memory evasion: 
Process Doppelgänging.

43

Process Doppelgänging uses an NTFS transaction to “inject” code 
into a file without actually modifying the file on disk.

This conceals the malicious code from anti-malware detection.

SynAck Ransomware was the first public sample to utilize 
Process Doppelgänging in the wild.



#RSAC

You could observe the SynAck infection attempt in your 
lab by using Process Monitor.

44

SynAck creates the file msiexec.exe, then launches it.

The file is a legitimate, benign executable by Microsoft.

Launching a non-malicious program often suggests a 
memory injection attempt.



#RSAC

Prepare to explore SynAck in your debugger.

45

We’ll use x64dbg, because this is a 64-bit sample.

Say goodbye to UIWIX and exit x32dbg.

Extract SynAck.exe from malware.zip (password: malware19).

Load SynAck.exe from into x64dbg.

The debugger will pause at the beginning of the specimen.



#RSAC

Use the debugger to see how SynAck creates processes.

46

Type the SetBPX command in x64dbg to set breakpoints on 
variations of process creation APIs:
– CreateProcessA, CreateProcessW

– NtCreateProcess, NtCreateProcessEx

– ZwCreateProcess, ZwCreateProcessEx

This can help locate code worth analyzing.



#RSAC

Run the specimen in the debugger (F9).

47

The malware will run, then pause at ZwCreateProcessEx:



#RSAC

Allow the specimen to execute this API call, then pause.

48

Direct SynAck to execute ZwCreateProcessEx and pause after 
returning to the malware author’s code.

To do that, click Debug > Run till user code (Alt+F9)

Once the specimen pauses, scroll up one line in the debugger.



#RSAC

SynAck launched msiexec.exe in a suspended state.

49

Process Hacker would offer good visibility into the processes.

Spawning a suspended child process often indicates an attempt 
to perform Process Hollowing.

Continue the analysis to prove or disprove this hypothesis.



#RSAC

Extract strings from memory of SynAck in x64dbg.

50

Right-click in x64dbg and select:

Strings CreateTransaction and RollbackTransaction suggest 
APIs used for Process Doppelgänging.



#RSAC

Double-click the string CreateTransaction to go 
to the code that references it.

51

You could continue examining this code in the debugger to 
understand how it works.



#RSAC

Process Doppelgänging conceals code from scanners.

52

Initiate a transaction: CreateTransaction/NtCreateTransaction

Open a decoy, benign file: CreateFileTransacted

Write malicious code into a section of the decoy file: 
WriteFile, NtCreateSection

Discard the transaction: 
RollbackTransaction/NtRollbackTransaction

Create a process out of the section: NtCreateProcessEx

Launch the malicious code in the process: NtCreateThreadEx



#RSAC

What have we just learned?

53

Malware authors look for—and often find—ways of running 
malicious code in the blind spot of anti-malware tools.

Process Doppelgänging provides one such approach.

You can navigate through the code inside the debugger to 
observe how it unravels itself during execution.

Examining strings in memory of the specimen and then locating 
the associated code is one way of accomplishing this.



Conclusions and Wrap-Up



#RSAC

As anti-malware measures advance, so does evasion.

55

Understand the nature of evasion tactics.

Learn how to examine malware to understand the steps it 
takes to get around your defenses.

Assess your security architecture in the face of evasive threats.



#RSAC

Next steps for you:

56

Download these materials, if you haven’t already: 
https://dfir.to/malware-analysis-lab

Practice in your lab by reviewing the steps we performed in this 
session.

Flip through the appendix for more evasion examples.

Reach out to Lenny Zeltser with questions: @lennyzeltser



Appendix: Abuse OS and application 
features to compromise endpoints.



#RSAC

Another evasion approach: Blending into the 
environment by living off the land.

58

Minimize the use of traditional malicious code to lower exposure 
to scans and other anti-malware measures.

Utilize scripting capabilities of modern document files.

Download, execute and entrench by using built-in OS programs, 
DLLs and scripts to “live off the land.”
– powershell.exe, wscript.exe, mshta.exe, wmic.exe

– certutil.exe, hh.exe, forfiles.exe, zipfldr.dll, url.dll



#RSAC

Example: Emotet Downloader

59

Emotet started out as an evasive downloader for banking trojans 
and evolved to deliver other malicious payload.

Its propagation methods included emails with malicious 
Microsoft Word attachments.



#RSAC

You can extract Microsoft Office macros with olevba.

60

Emotet’s macros were obfuscated to evade detection 
and slow down analysts.



#RSAC

Behavioral analysis can help when code is obfuscated.

61

You could infect your lab system while monitoring it with Process 
Monitor.

The process tree would show the infection chain, which includes 
Microsoft Word (macro), batch files and a PowerShell script.

You’d copy and paste command line details to see the scripts.



#RSAC

Emotet’s batch files’ encoding is similar to that of
Invoke-DOSfuscation.

62

The technique uses substitution and other obfuscation capabilities 
built into cmd.exe.



#RSAC

The PowerShell script downloads the next payload.

63

In this case, the binaries are saved to the file system.

For further evasion, malware could’ve kept them in memory.



#RSAC

What have we just learned?

64

One approach to examining obfuscated malicious code is to 
observe it during the infection with the right tools:
– Microsoft Office

– Process Monitor

– olvba

Attackers persuade humans to circumvent security measures.

Attackers abuse application features even without exploits.

Attackers use legitimate tools to bypass controls (living off the land).


