Introduction to Malware Analysis

Lenny Zeltser
SANS Institute & NCR Corp

Lenny Zeltser teaches SANS malware
analysis course. See LearnREM.com.

Copyright 2009-2012 Lenny Zeltser

SANS Institute’s popular malware analysis course
has helped IT administrators, security
professionals, and malware specialists fight
malicious code in their organizations. In this
briefing, | introduce the process of reverse-
engineering malicious software. | cover
behavioral and code analysis phases, to make this
topic accessible even to individuals with a limited
exposure to programming concepts. You'll learn
the fundamentals and associated tools to get
started with malware analysis.

Security incident responders benefit from
knowing how to reverse-engineer malware,
because this process helps in assessing the
event's scope, severity, and repercussions. It also
assists in containing the incident and in planning
recovery steps. Those who perform forensic
investigations also benefit from mastering this
topic, because they learn how to understand key
characteristic of malware present on
compromised systems.



Malicious software is
an integral component
of many investigations.

Copyright 2009-2012 Lenny Zeltser

How relevant malware has become in the context
of computer intrusions! Almost every data breach
announced publically, it seems, involves some form
of malicious software, such as backdoors, trojans,
network worms, exploits, and so on.

In this session, | will introduce you to the
approaches for analyzing malware, so you can turn
malicious executable inside out to understand their
inner-workings.



Organizations struggle
to understand malware
they encounter.

Copyright 2009-2012 Lenny Zeltser

When such an intrusion occurs at your
organization, will you be able to quickly assess the
threat? Knowing how to analyze malware can help
you understand the context of the incident, its
severity and repercussions. It can help you plan
your response to contain the incident’s scope and,
in some cases, understand what entities might be
behind the intrusion.

Perhaps that is why the individuals who are looking
to acquire malware analysis skills are no longer just
anti-virus and threat researchers, but also system
and network administrators, as well as general
security professionals. More and more often, these
individuals are being asked to understand the
capabilities of malware that their organizations
discover.



Knowing how to analyze malware lets
you to take control of the incident.

Copyright 2009-2012 Lenny Zeltser

Knowing how to analyze malware can bring an
element of control into an otherwise chaotic
environment that exists around a security incident.
It’s also a critical aspect of modern forensic analysis
actions, because it’s all too frequent for
investigators to discover malware on the
compromised systems.



The reversing course covers
a practical approach to
analyzing the threat.

Behavioral
Analysis

Code
Analysis

Copyright 2009-2012 Lenny Zeltser

The approach to reverse-engineering that has
worked for many analysts involves two key phases:
behavioral analysis and code analysis. During
behavioral analysis, we examine how the specimen
interacts with its environment. The code analysis
phase allows us to learn about the specimen’s
capabilities by examining the code from which the
program is comprised.

You’ll see this approach in action in the upcoming
slides.



| find that the best way to learn malware analysis is

e by going through examples. The malicious
Our challenge for this executable from which we’ll learn in this session is

‘ « e . captured on this slide. It’s a trojan copy of Windows
H brleflng' a trOJan copy of Live Messenger—a fake instant messenger client
Windows Live Messe nger that was being distributed to victims via email.
' Many such trojans have the capability of capturing
S Onine < the victims’ logon credentials, and may have other

“undocumented” features.

Let’s see what capabilities are built into this
malicious executable. As | lead you through the
analysis, I'll introduce the tools and techniques that
Sl will help with the reverse-engineering process.

Note that in this example, as with the majority of
malicious incidents you’ll probably encounter, we’ll
be examining a compiled Windows executable for
which we have no source code.

Copyright 2009-2012 Lenny Zeltser



Behavioral analysis examines

interactions with the environment.

* Execute malware in an isolated laboratory
system.

* Observe how it interacts with the file
system, registry, network.

* |nteract with malware to learn more
about it.

Copyright 2009-2012 Lenny Zeltser

| typically start examining a malicious executable
with behavioral analysis, because it comes more
easily to me than code analysis. If your strength is
in programming and x86 assembly, then you may
prefer to start with the code analysis phase instead.

When performing behavioral analysis, we’re going
to infect a laboratory system with the specimen.
Then we’ll observe how the malicious executable
accesses the file system, the registry, and the
network. As we learn about the program’s
expectations of its runtime environment, we will
slightly adjust the laboratory infrastructure to
evoke additional behavior from the program. We
will also attempt to interact with the program to
discover additional characteristics it may exhibit.



It’s convenient to virtualize the lab
(VMware, VirtualBox, etc.).

| Windows 7 Lab - VMware Workstation

File Edit View VM Tabs Help
@ VO D=E®m| D

-

Home (3 REMnux (3 Windows XP Lab ( Windows 7 Lab

Copyright 2009-2012 Lenny Zeltser

When performing malware analysis, it’s convenient to
use virtualization software when setting up your lab.
Such tools typically simulate the underlying hardware,
allowing you two run multiple instances of “virtual”
machines simultaneously. For instance, you could use
Windows 7 as your base OS, while having a separate
instance of Windows 7 running in another window, a
Windows XP window in another and a Linux instance in
another.

Each virtual machine behaves mostly as “real” physical
systems, in that it has its own set of 1/O peripherals,
RAM, network settings, and so on. All these aspects of
the virtual machine are, well, virtualized.

The convenience of a virtualized lab comes, in part,
from the flexibility of having multiple instances of
various operating systems available to you within a
single physical system. Virtualization software can even
emulate a network, so that your lab doesn’t need to be
connected to a physical network at all. Yet, the virtual
machines will be able to communicate with each other
over the simulated network, blissfully unaware that the
network is not “real.”

| typically use VMware Workstation for virtualization.
Other choices include Microsoft Virtual PC, Oracle
VirtualBox, etc.



Being able to switch between
snapshots is very helpful.

* A snapshot represents a state of the
virtual machine

* VMware Workstation supports multiple
snapshots

* For physical systems use dd, Ghost, etc.

2l ~ N ol ) &
- = - - - >
Initial Boot Activated Added Tools Updated Malware You Are
Windows Patches Experimen... Here

Copyright 2009-2012 Lenny Zeltser

One of the most convenient aspects of using
virtualization software is its support for snapshots.
They allow you to preserve the current state of the
virtual machine with a click of a button, and return
to it with another click. VMware Workstation
support multiple snapshots, which comes in very
handy for “bookmarking” different stages of your
analysis, so you can move back and forth during
your experiments without losing important runtime
details.

Snapshot capabilities are also very useful for
reverting back to the system’s pristine state after
you’ve completed your research and want prepare
the lab for your next analysis. Save the state of the
virtual machine after you’ve installed the OS,
patched it, and set up the necessary tools. Once
you’re done with your analysis, click a button to
revert to that state. Very convenient!

Malware may have defenses that prevent it from
executing properly in a virtualized environment. In
these cases, the easiest step might be to use a set
of physical systems, instead. To mimic snapshot
functionality when you’re unable to use
virtualization software, use disk cloning tools such
as dd and Norton Ghost.



Mitigate the risks of malware

attempting to escape from the lab.

* Avoid production network connectivity.
* Dedicate a host to the lab.

* Restore the host if anything suspicious
occurs.

* Keep up with patches to virtualization
software (e.g. VMware).

Copyright 2009-2012 Lenny Zeltser

Any malware analysis lab carries the risk of
malware finding a way to escape from your
sandbox. This risk is greater with a virtualized lab,
because the isolation it provides is not as reliable
as the literal air gap between physical systems.

Since virtualization software is written by human
beings, it will have bugs in it. Some of these bugs
are vulnerabilities that malicious software may use
in an attempt to escape the sandbox around your
laboratory system. To address this risk, | suggest
dedicating a single physical system to your
virtualized lab: run several virtual machines in it,
but don’t use that system for another purpose.
Also, don’t connect the laboratory box to your
production network unless required for performing
specific tasks.

It’s also very important to keep your virtualization
software up to date on security patches.
Sometimes they’re a pain to download and install.

If you notice anything suspicious in the lab
environment when performing your analysis,
restore the physical system from a backup copy,
and keep a close eye on the environment.

10



Infect the lab system. Regshot

helps detect changes.

Add File Edit Format View Help
Files added:3

| il e

C:\Windows\msnsettings. dat
Dirs:l| c:\pas.txt
«[m

k?j\ )
&)

% | Regshot =] & = Windows Live
Conpere ogs save o Messenger.exe
@ PlainTXT  HTML document | -
¥ Scan dir1[;dir2;...;dir nn]: cOmpare |
[C:\ J Clear
Output path: Quit |
,C_lv- i ~res.bxt - Notepad ‘_‘: ”—El |@

C:\windows\Prefetch\WINDOWS LIVE MESSENGER.EXE-F3CD9170.pf

[}

Interact with malware a bit, e.g. try to login to it.

Open

#' | Run as administrator

Troubleshoot compatibi
7-Zip

Share with

Pin to Taskbar

Pin to Start Menu

Restore previous version
Send to

Cut
Copy

Create shortcut

Delete

Copyright 2009-2012 Lenny Zeltser

Let’s see this approach in action. Let’s say you have
a suspicious executable that you’d like to analyze.
You bring it into your lab, possibly via a removable
USB disk and place it on the desktop of the virtual
machine you’re about to infect. Now what?

First, take a snapshot of the state of the machine’s
file system and the registry. This will allow you to
quickly see what major changes have occurred on
the system after you infect it.

| like the free tool called Regshot for this purpose
(http://sourceforge.net/projects/regshot). To use it,
enable the “Scan dirl” option, and in the
corresponding window type “C:\”. Click “1st shot”.

After Regshot takes the first snapshot, run the
malicious executable “as administrator” to allow
the malicious program to reach its full potential.
Interact with it a bit (e.g., try logging into it). Then
kill the malicious process. Next, click the “2" shot”
button in RegShot, and click the “Compare” button.
You’ll see a report that describes the major changes
to the system’s state. In this case, we see that a few
files were added to the system.


http://sourceforge.net/projects/regshot

Examine the newly-created
suspicious files.

pas.bat - Notepad o| =R
File Edit Format View Help

W, . com
Username: abc@example.com

Password: pass

. - com msnsettings.dat - Notepad

File Edit Format View Help

hello
0

0

-1

=1

0

0

=1

Please type in an error message
g:‘-.‘Program Files\MSN Messenger\msnmsgr.exe

. NOOO

Copyright 2009-2012 Lenny Zeltser

The two files that appeared on the system after we
infected it are pas.txt and msnsettings.dat. Take a
look at them using notepad.

It looks like pas.txt has captured the logon
credentials we used when logging into the
malicious executable. That makes sense, because
we received reports that this executable is a trojan
copy of Windows Live Messenger.

The msnsettings.dat file looks like a configuration
file of some sort.

12



Process Monitor observes malware
as it infects the system.

2 Process Monitor - Sysi Www.sysi ls.com
File Edit Event Filter Tools Options Help

6:38:2... &8 Windows Live
6:38:2... &3Windows Live
6:38:2... &3 Windows Live
6:38:2... &3Windows Live

3956 BhCreateFle  C:\Windows
3956 BhQueryDirect...C:\Windows\msnsettings dat
3956 \\ .

395£|~Createﬁe C:\Windows \msnsettings dat

ZH ABRE A 8 A5 EEFEEZM
Time Process Name PID Operation Path Resutt Detail

3956 BAWriteFile C:\Windows\msnsettings dat

0

6:38:2... &3 Windows Live
«

SUCCESS Desired Access: Read Data/Li
NO SUCH FILE Fitter: msnsettings dat

SUCCESS
SUCCESS
SUCCESS

Desired Access: Generic Write
Offset: 0, Length: 128, Priority: ~

»

Sho|

22 Process Monitor - Sysi Is: Www.sysil (e
File Edit Event Filter Tools Options Help

=

PID Operation Path
6:33:3.. &3 Windows Live ... 3956 }

=hlreat \pa d
6:38:3.. &3Windows Live ...  3956(BAWrteFle  C:\paste
6:38:3... &3 Windows Live 3956 =RCloseFie pasba

« m

sd | ARPE | CAS | B A5 EEEZE
Time Process Name WRe:uilr Detail

SUCCESS
SUCCESS
SUCCESS

Desired Access: Generic Write
Offset: 0, Length: 87, Priority: N

»

Showing 5,007 of 78,984 events (6.3%)

Backed by virtual memory

Copyright 2009-2012 Lenny Zeltser

Another free tool that can help us understand how
the malicious program interacted with the file
system and the registry is Process Monitor
(http://technet.microsoft.com/en-
us/sysinternals/bb896645.aspx).

To use Process Monitor, run it while infecting the
system. | typically launch the tool right after taking
the first Regshot snapshot. Remember to pause
capture in Process Monitor before taking the
second Regshot snapshot.

Process Monitor records API calls that deal with file
system, registry and other local activities. In the
screen shot on this slide, you see attempts by our
malware specimen to create pas.txt file and to
locate the msnsettings.dat file.

Process Monitor’s log is very comprehensive.
However, it is also very noisy. | use Regshot to make
sure that | don’t miss anything critical, while | rely
on Process Monitor to present a comprehensive
perspective on the specimen’s interactions with the
file system and the registry.

13


http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Now you know to look for additional
files on the victim’s actual system.

| msnsettings.dat - Notepad ol e =
File Edit Format View Help
test
0
0
-1
1

ease type in an error message

0
0
P =
c:\Program Files\MSN Messenger\msnmsgr.exe

gsmtpl85.google.com J
mastercleanex@gmail. com

Several settings on
the victim’s system

. Noog

differ from the lab’s.

Copyright 2009-2012 Lenny Zeltser

Reverse-engineering malware can help you become
better at incident response and forensic analysis. In
our scenario, we have already discovered that
Windows Live Messenger trojan makes use of the
msnsettings.dat file. Now you know to look for it on
the compromised system, even if you didn’t initially
realize that this file was important.

Once you have a copy of msnsettings.dat, you can
open it to see whether it reveals additional details
about the program. On this slide, I've highlighted
several lines from that file.

One is a string “test,” which we may be able to use
later when trying to understand how the trojan
processes the msnsettings.dat file. Another line,
“gsmtp185.google.com” specifies an SMTP mail
server; this suggests that our specimen has the
ability to send email. The file also includes an email
address, “mastercleanex@gmail.com”. This may be
the recipient of the information that the trojan
might attempt to send out. Of course, these are
just theories at this point. We’ll need to confirm or
deny them during subsequent analysis steps.

14



CaptureBAT offers another
perspective on the behavior.

C:\Program Files\Capture>capturebat -c -n

Option: Capturing network packets

Option: Collecting modified files

Loaded kernel driver: CaptureProcessMonitor
Loaded kernel driver: CaptureRegistryMonitor
Loaded filter driver: CaptureFileMonitor

process: created C:\...\explorer.exe -> ...Windows Live Messenger.exe
file: Write ...Windows Live Messenger.exe -> C:\WINDOWS\msnsettings.dat
file: Write ...Windows Live Messenger.exe -> C:\pas.txt

The records were cleaned up to fit the slide.

Copyright 2009-2012 Lenny Zeltser

It helps to have several tools to observe the
malicious program’s interactions with its
environment. Another very useful and free tool I'd
like to tell you about is CaptureBAT
(http://www.honeynet.org/node/315).

CaptureBAT is similar to Process Monitor in that it
records local processes’ interactions with their
environment. CaptureBAT’s logs tend to be less
noisy than those created by Process Monitor. This is
because CaptureBAT comes with filters that
eliminate the majority of standard, non-malicious
activities from the logs. You can customize these
filters to your liking, as they are text files located in
the directory where you install CaptureBAT.

If you launch CaptureBAT with the “-c” parameter,
it will capture any files deleted in the background,
allowing you to look at and restore even those files
that the Windows Recycle Bin cannot capture.

Launching CaptureBAT with the “-n” parameter
tells the tool to capture network traffic, like a
sniffer would, saving the result into a local .cap file.

As you can see on this slide, CaptureBAT confirmed
our earlier findings about the malware specimen.

15


http://www.honeynet.org/node/315

Place the new file into the lab. Now
the sniffer (Wireshark) shows DNS.

# Frame 5: 79 bytes on wire (632 bits), 79 bytes captured (632 b|
# Ethernet II, Src: 00:0c:29:54:51:a6 (00:0c:29:54:51:a6), Dst:

3 g t 8 0 Src .168.86.13 92.168
# User Datagram Protocol, Src Port: 55487 (55487), Dst Port: 53

Transaction ID: O0xb9f8
# Flags: 0x0100 standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
- Queries
-] gsmtpl85.qgoogle.com: type A, class IN

Name:[ gsmtp185. google. com
H ad

Type: A (HOST address

The hostname suggests SMTP, but we’ll set up
DNS resolution to confirm.

Copyright 2009-2012 Lenny Zeltser

You can load the .cap file created by CaptureBAT
into a full-feature network sniffer, such as
Wireshark (http://www.wireshark.org). If you don’t
like using CaptureBAT, you could also use Wireshark
to capture traffic direct off the laboratory network.

As you can see on this slide, the sniffer shows that
the infected system has issued a DNS query,
attempting to resolve the hosthname
“gsmtp185.google.com”. The “smtp” in the
hostname suggests that the malware specimen is
looking for a mail server to connect to, reinforcing
our earlier theory of how the trojan might use this
hostname.

16


http://www.wireshark.org/

Redirect network traffic via
ApateDNS or the hosts file.

Now the network sniffer confirms an SMTP attempt.

[192.168.86.130  192.168.86.1 TCP 49157 > 25 [SYN]]|

I¥ ApateDNS

Capture Window | DNS Hex View
Time Domain Requested
07:38:53 gsmtp185.google.com

o) ® e

DNS Retumed
FOUND

[+] Attempting to find DNS by DHCP or Static DNS.

[+] using IP address 192.168.86.1 for DNS Reply.

[+] ONS set to 127.e.0.1 on Intel(R) PRO/10@@ MT Network Connection.
[+] sending valid DNS response of first request.

[+] Server started at ©7:38:51 successfully.

Copyright 2009-2012 Lenny Zeltser

To confirm how the specimen wishes to use
“gsmtp185.google.com”, allow the trojan to resolve
this hostname. Once it can resolve it, it will
presumably attempt connecting to it, and you will
be able to use a network sniffer to see what service
the specimen is trying to access.

To set up name resolution, insert an entry for the
hostname into the “hosts” file on the infected
system. A faster alternative is to use a tool called
ApateDNS, available as a free download at
http://www.mandiant.com/resources/download/re

search-tool-mandiant-apatedns

ApateDNS is a DNS server that you can configure to
answer any DNS query with a single IP address of
your choice. | usually suggest picking an IP address
of some system in your lab on which you can run
the service that malware may look for. This will
redirect the connection to the host where you'd set
up the listener, allowing the connection to be
completed so you can learn about its purpose.

In our example, captured on this slide, the network
sniffer now confirmed that the infected system is
attempting to connect to TCP port 25 on
“gsmtp185.google.com”.

17


http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
http://www.mandiant.com/resources/download/research-tool-mandiant-apatedns

FakeNet can act as DNS, SMTP, etc.
servers and intercept the message.

) FakeNet o ||&@]=R

talled Providers

ayered Providers
alled Chains
ns

alNew Data on port 25.1
g for RCPT TO:<{mastercleanexBgmail.com>
[Listening fowr

[New Data on port 25.1
A

il dinput. end with <CRLF>.<{CRLF>

e.com

ean ;na;l:can
18 Aug 2812 07:48:10 -0400

Password: pass

Copyright 2009-2012 Lenny Zeltser

Now that you know malware is looking for an SMTP
server, you can provide that service to it within
your lab. An easy way to do this is to use the
FakeNet tool, available as a free download from
http://practicalmalwareanalysis.com/fakenet

FakeNet automatically redirects network traffic, so
there is no need to modify the hosts file or use
ApateDNS with this tool. FakeNet emulates various
common services, including HTTP and SMTP.

In our example, illustrated on this slide, FakeNet
pretends to be a mail server, intercepting the email
message that our trojan attempts to send though

owi

gsmtp185.google.com”.

Now you can see the contents of the message that
the trojan is mailing to the attacker. As highlighted
on this slide, the message includes the victim’s
Windows Live Messenger username and password.
We also see that the exfiltrated data is directed to
“mastercleanex@gmail.com”.

18


http://practicalmalwareanalysis.com/fakenet/
http://practicalmalwareanalysis.com/fakenet/

Mold the environment based on the
observations to evoke new behavior.

* Add services gradually, as you learn what
the specimen wants.

* If you give too much at once, you lose
cause-effect insights.

* Repeat until no interesting discoveries.

Copyright 2009-2012 Lenny Zeltser

How can we generalize the behavioral analysis
process we’ve been following? As you observe a
characteristic of the specimen, you typically notice
an element of the environment that the program is
looking for, yet does not possess in your lab. For
instance, the executable may be attempting to
resolve a host name. To evoke new characteristics,
you provide to the specimen the service it needs,
thus allowing it to perform further actions to fulfill
each its true potential.

With every service you add to the environment,
you learn more about the specimen. Note that if
you change too many environmental characteristics
at the same time, you malware may perform too
many new actions. This will speed up your analysis
at the expense of knowing exactly what change was
responsible for which observed characteristic.

When do you stop molding the laboratory
environment to match the specimen’s expectations
and dependencies? When you there are no more
changes to introduce into the lab to evoke
previously-unseen behavioral characteristics. That’s
typically the point when you will want to start the
next phase of the reverse-engineering process:

code analysis.
19



Code analysis expands and reinforces
behavioral findings.

* Tools of the trade: disassembler and
debugger.

* Examine the specimen’s assembly code.

» Step through the most interesting parts
of the code.

Copyright 2009-2012 Lenny Zeltser

Behavioral analysis can be insightful and relatively
fast. However, it will rarely tell you everything you
need to know about malware of moderate and
advanced complexity. That’s where code analysis
can be of help. It can help reinforce your behavioral
findings, and can shine light on additional
properties of the specimen that you may not have
discovered behaviorally.

Code analysis can be tricky and time-consuming,
because in the world of malware you almost never
have the luxury of seeing the source code of the
program you’re analysis. Instead, you need to
reverse-engineer the compiled executable’s
functionality by examining its code at the assembly
level. A debugger and a disassembler can help you
in this task. A disassembler converts the specimen’s
instructions from their binary form into the human-
readable assembly form. A debugger lets you step
through the most interesting parts of the code,
interacting with it and observing the effects of its
instructions to understand their purpose.

20



Looking at strings is a often a good
start. In this example, use OllyDbg.

2 [R] Text strings referenced in Windows_:CODE
Address IDisasseﬂbly lText string

©0496ECO PUSH Windows_.004973BC ASCII "msnsettings.dat”

©O0496EES MOV EDX,Windows_.004973D4 |ASCII "hello"

00496F12 MOV EDX,Windows_.004973F@ |ASCII "-1"

00496F21| MOV EDX,Windows_.004973F@ |ASCII "-1"

00496F4E MOV EDX,Windows_.004973F@ |ASCII "-1"

00496F5D | MOV EDX,Windows_.004973FC ASCII "Please type in an error message”|
00496F6C MOV EDX,Windows_.00497424 |ASCII "C:\Program Files\MSN Messenger\m|
00496F8A MOV EDX,Windows_.00497458 |ASCII "C:/"

Name (lab
Name in all modules .
Backup » d
1| == — — Looks like default
Binary » Sequence of commands Ctri+S H
assont Boce || ot msnsettings.dat content.
Label s Binary string Ctri+8
;:a:"kfor:\t N All intermodular calls
All commands
Hit trace » al
Run trace > oqmae
All constants
Goto 4 All switches
Follow in Dump »|  Allreferenced text strings
View call tree Ctri+K

User-defined label

Userdefed conmes
»

Find references to

Copyright 2009-2012 Lenny Zeltser

OllyDbg is among my favorite tools for performing
code analysis. It’s free, very powerful, and includes
both a disassembler and a debugger. You can
download OllyDbg from:

http://www.ollydbg.de/

A good way to start analyzing the specimen’s code
often involves looking at the strings embedded in
its executable. To do this with OllyDbg, first load
the malicious executable into OllyDbg via File >
Open. Then, right-click on the code you will see in
the disassembler window, and select Search for >
All referenced text strings.

OllyDbg will then bring up a new window that will
show the strings it discovered, as you can see on
this slide. Notice that we have seen some of these
strings during behavioral analysis! Some of them
look like contents of the default msnsettings.dat
file that our specimen creates when infecting the
system.

21


http://www.ollydbg.de/

OllyDbg shows how the program
uses the string.

[€] CPU - main thread, module Windows_

00496ECO

. 68 BC734900 |
. 8D85 FAFEFFFF
. BA 03000000
. E8 DBDDFGFF
. 8B85 FAFEFFFF

v .

E8 9C25F7FF
Al 889C4900

. BA D47349e0
. E8 95DAF6FF
. Al 98904900
. BA E4734900
. E8 B6DAF6FF
. Al 4CAe4900
. BA E4734900
. E8 77DAF6FF
. Al AB9F4900
. BA F@734900
. E8 68DAF6FF
. Al 7494900
. BA F@734900
. E8 S59DAF6FF

PUSH Windows_.004973BC
LEA EAX,DWORD PTR SS:[EBP-10C]
MOV EDX,3

CALL Windows_.00404CB0

MOV EAX,DWORD PTR SS:[EBP-10C]
CALL Windows_.0040947C

MOV EAX,DWORD PTR DS:[499C88]
MOV EDX,Windows_.804973D4
CALL Windows_.00404984

MOV EAX,DWORD PTR DS:[499D98]
MOV EDX,Windows_.004973E4
CALL Windows_.00404984

MOV EAX,DWORD PTR DS:[49A04C]
MOV EDX,Windows_.004973E4
CALL Windows_.00404984

MOV EAX,DWORD PTR DS:[499FA8]
MOV EDX,Windows_.0@04973F0
CALL Windows_.00404984

MOV EAX,DWORD PTR DS:[499E74]
MOV EDX,Windows_.004973F0
CALL Windows_.00404984

MOV _EAX,DWORD PTR DS:[49A2981

Al _98A24900
004973BC=Windows_.0049738C

ASCIT

ASCII

“msnsettings.dat"

“hello"

ASCIT "-1"

ASCIT "-1"

* |Registers (FPU)

(ASCII "msnsettings.dat")

X 76EC1102

X ©04978CC W

004978CC

ERROR}

Copyright 2009-2012 Lenny Zeltser

The reason we may be interested in looking at the
embedded strings is because the string listing
might include a reference to a malicious
characteristic or a behavioral trait that we would
like to understand. In this case, consider the
screenshot on this slide. We got here by
highlighting one of the instances of
“msnsettings.dat” strings, as shown on the
previous slide, and pressing Enter. Now, OllyDbg
shows us how the program makes use of this string.

If we wanted to pursue this path of analysis further,
we could now set a breakpoint on this command,
run the trojan in the debugger, and see what it
does. We're not going to investigate this particular
aspect of the malicious program, because | want to
show you another, more interesting technique.

22



What’s the purpose of the “test” string
in the victim’s msnsettings.dat file?

* Run the specimen
in OllyDbg.

* Look in memory
for string “test”.

* Set an access
breakpoint.

d msnsettings.dat - Notepad
File Edit Format View Help

== o~

-1

Please type in an error message
c:\Program Files\MSN Messenger\msnmsgr.exe
1

gsmtpl85. google. com
mastercleanex@gmail.com

. Nooo

Copyright 2009-2012 Lenny Zeltser

You may recall that the version of msnsetting.dat
on the victim’s system was slightly different from
the version that the trojan created on our
laboratory system when we first ran it. Specifically,
in our case, the file contained the string “hello”,
while the victim’s version had the string “test”
instead. What'’s that about?

The string “test” is not visible anywhere within the
body of the malicious executable when it’s not
running. That’s probably because the trojan loads
this string from msnsettings.dat during run time. To
understand how the trojan uses the string “test,”
we will search for it in the memory of the running
trojan.

Once we locate the string in the trojan’s memory,
we will set an access breakpoint there. A
breakpoint is a condition that tells the debugger
when to pause the normal execution of the
debugged program. Once the execution is paused,
the debugger will give us a chance to review the
debugged program’s run time environment to
understand what it is doing. This is probably the
most useful feature of a debugger in the context of
reverse-engineering malware.

23



Alt+M brings up the memory map.
Search for via Ctrl+B; Ctrl+L repeats.

2 Enter binary string to search for =
AsCl [cest
UNICODE [
HEX+04 [74 65 73 74
¥ Entire block 4] J
™ Case sensitive 0K Cancel
1| M Memory map =3 Ec8 )
Address |Size Owner Section |Contains |Type|Access
00010000 00010000 Map |RW
00020000  Booele0e Priv|RW
0012A000 0000100 Actualize RW Guarde
00128000 0000500 Dump in CPU RW Guarde
00130000  booe400 Dump R
00140000 0000200 [ Search C(rl*B] R

00150000 AAAA100

Rl

Copyright 2009-2012 Lenny Zeltser

To make use of this technique, load the malicious
program into OllyDbg, then run it. Once the trojan
is running, press Alt+M to bring up the memory
map in OllyDbg. This shows the listing of the
memory segments mapped and used by the
currently-debugged executable. To search the
executable’s memory for a particular string, press
Ctrl+B in OllyDbg; then, enter your string. In this
case, we'’ll enter “test” in the ASCII field of the
dialog box. Then press Enter.

It is possible that your string will be located in
several memory areas. The one you’re interested in
won’t necessarily be the fist one. To repeat your
search, click on the memory map window, then
press Ctrl+L. (Don’t forget to click on the memory
map window!)

In the case of our example, we’ll need to perform
the initial search via Ctrl+B. This will find us an
instance of “test” that is not promising. We will
repeat the search by pressing Ctrl+L once.



A memory access breakpoint will tell
us when the specimen uses the string.

[D] Dump - 01360000.0137BFFF = |-@
¢ 1C|74 65 73 74 00 00 00 00 16 00 00 00 DO 0B 46 00 test....y...DIF. 4
00 00 00 00 Backup » [2E 00 00 00|....LeF.2%6 ....

74 20 61 6E .=<¥e. . Start ar
00 00 36 01| Activity

01 00 00 00|  Copy

»

20 41 63 74 gy <
»

»

29¢|9C 21 36 01 .
\C|@0 00 @0 op|  Searchfor PR e

01 00 00 20 Go to address Ctrl+G

00 00 00 00
00 00 00 00
00 00 00 00
00 8F 36 01|  Shot

Hardware, on access
Hex Hardware, on write

Text Hardware, on execution

00 00 00 00|.6 ............

v v v v v

00 00 00 00 Long EC SF 46 00|....0€6 ....1_F.
00 8F 36 01 Float 00 00 00 00| .6 ............
00 00 00 00 Disassemble 00 00 00 00| ...

00 00 00 00 iy » [94 26 46 @0

1C|9C 21 36 01 00 00 00 00|@!6 2€6 .......
00 00 00 @0  Appearance J1B0 00 00/00].: i
01 00 00 00 66 7E 41 00 76 /E 41 00 48 95 36 01| ...f~A.v~A.He6
00 00 00 @0 00 @1 00 @2 02 00 01 00 FF FF FF FF|..... Q1. -

Copyright 2009-2012 Lenny Zeltser

Now that we’ve located the string “test” in the
trojan’s memory, we can set a breakpoint there. In
this case we’ll be setting a memory access
breakpoint, so that OllyDbg pauses the program’s
execution whenever it attempts to access this
particular memory area. Effectively, this will allow
us to catch the trojan while it is attempting to use
the “test” string; we will then be able to see how it
makes use of the string.

To set the brakpoint, highlight the exact characters
of the string “test”, then right-click and click
“Breakpoint” > “Memory, on access”.

The trojan will continue to run. Now we can either
wait for it to try using the sting, or attempt
interacting with the program to try to cause it to
use the string.

We can try interacting with the trojan by typing
some text into its first field, the one labeled “E-mail
address”. If you type any character there after
setting our memory breakpoint, you will
immediately trigger the breakpoint, as you can see
on the next slide.

25



Interact with the program to try
triggering the breakpoint.

| . 8B1F
. 3809
.75 41
. 4A
.74 17
. 38FD
.75 3A
. 4A
24 10

[€] CPU - main thread, module Windows

MOV EBX,DWORD PTR DS:[EDI]
P CL,BL

INZ SHORT Windows_.0@404DDA
DEC EDX

JE SHORT Windows_.0@404D83
CMP CH,BH

* |Registers (F

X 74736574

INZ
pec | Modify EBX

BL=74 ('t')
CL=67 ('g')

=

15 Hexadecimal 74736574

Address | Hex dump

ok |

Signed 1953719668 D95
Unsigned 1953719668

chae 0 [ e &

Cancel I

“t” in EBX is compared to “g

o __n

in ECX.

Copyright 2009-2012 Lenny Zeltser

As you can see on the left side of this slide, | entered a
character into the field. | picked a letter at random: “g”.
Right away, OllyDbg comes to the foreground, because
we just triggered an attempt by the trojan to somehow
use the string “test”. You can now interact with the
code, looking at its environment, and even running it as

slowly as one instruction at a time.

To execute one instruction, press F8. To examine the
run-time environment of the program, look at its
registers in the top right corner of the OllyDbg window.
A register is a specialized location on the CPU that can
store data and that is very fast.

What'’s going on in this part of the code? Don’t worry if
you don’t understand much of the assembly code you
see there: this is just an introduction to malware
analysis, so I'll walk you through the most important
parts. OllyDbg has highlighted the instruction that will
be executed next by the program, “CMP CL, BL”. This
compares contents of two registers, CL and BL. CL
points to the lowest byte of ECX; BL points to the
lowest byte of EBX, so it’s an efficient way of comparing
parts of ECX and EBX registers.

Double-click the registers to see their contents. ECX
contains the character we entered, “g”. EBX contains
the string that our input is being compared to, “test”
(it’s stored backwards).



Repeat the experiment. Enter “t”
to pass the first test, then “a”.

[€] cPU - main thread, module Windows_

. 8B1F MOV EBX,DWORD PTR DS:[EDI] +|Registers (FPU)

. 3809 |CMP CL,BL

..75 41 |INZ SHORT Windows_.08404DDA
. 4A DEC EDX

..74 17 |JE SHORT Windows_.00484DB3

XTI | . 3870 | CMP CH,BH -
..75 3A |INZ SHORT Windows_.00484DDA
- 42 [Modify ECX ]
Al o

2
s MET) Hexadecimal 00006174 00404D9C

CH=61 (‘a')

i 24348
Address IHex dum Siged
Unsigned 243948

Char |\x00 \x00 a t
OK I Cancel [

-]

“e” in EBX is compared to “a@” in ECX.

Copyright 2009-2012 Lenny Zeltser

Press F9 to continue executing the trojan. Delete
the “g” character you’ve entered previously. This
time, let the program match the first character of
the “test” string, and see how it compares the
second character. To do this, enter “ta” in the “E-
mail address” box. If you keep triggering the
breakpoint, press F9 to continue. You want to
pause right after you’ve had a chance to type “ta”.

Press F8 to execute one instruction after you’ve
triggered the breakpoint, just like you did
previously. This time, if you look at contents of ECX
and EBX registers, you’ll notice that the trojan is
comparing the character “a” that we entered to the
character “e” that it seems to expect. That’s
because the CH register points to the second
lowest byte of ECX; the BH register points to the
second lowest byte of EBX.

27



Looks like the specimen is comparing
contents of the email field to “test”.

&) Windows Live Messenger | o || @ |[ 52

File Contacts Actions Tools Help

Enter “test” in the field to see
what happens (outside the
debugger).

Status: Online

[] Remember Me

Copyright 2009-2012 Lenny Zeltser

So, the trojan seems to be looking for the string
“test” in the “E-mail address” field. Exit the
debugger, launch the trojan by itself, and enter
“test” to see what happens.

28



It seems that entering “test”
activates configuration screens.

& Password show options

Main Other

Password to show these options: test
Once Sign in is clicked do:
Terminate the application
Terminate the applicationa and run the real msn

© Show an error Message

Once Error Message is Closed:
© Do Nothing
Tetminate the application
Teminate the application and run the real msn
Other Options
V| Default Error Message

My error message:

(=)

&)=

&) Password show options

Main | [Other
Send Password to email
| Send Password to Email

Smitp host:  9smtp185.google.com

Email mastercleanex@gmail.com

Shortcuts
Create Shortcut to this program on the desktop
Delete Shorcut on teiminate
Create real shortcut on terminate

Save Settings
Save Password in

Filename: pas.t:

Copyright 2009-2012 Lenny Zeltser

Voila! When you enter “test”, the trojan brings you
to a brand new screen that seems to allow you to
configure the trojan’s operation. As you can see on
this slide, the configuration options let you define
the passphrase to activate this string, the address
where the trojan will send captured logon
credentials, etc.

29



Analysis wrap-up. What do we know?

* Captures Windows Live credentials.
* Saves them to C:\pas.txt.

* Transmits them via email to
mastercleanex@gmail.com.

* Configurable via “test,” per
C:\WINDOWS\msnsettings.dat.

Copyright 2009-2012 Lenny Zeltser

It’s time to wrap up our analysis. What have we
learned about the trojan through the steps |
demonstrated? We established that the malware
specimen captures the victim’s Windows Live
credentials entered into the trojan version of
Windows Live Messenger. It saves the username
and password to a local file, and then sends it to
the attacker via Gmail. We also identified a file,
msnsettings.dat, which the trojan uses to store its
configuration. The attacker can customize the
configuration by typing “test” into the “E-mail
address” field of the trojan; this keyword is based
on the previously-saved contents of
msnsettings.dat.

30



What’s the point?

* Assess the scope and severity of the
incident associated with malware

* Reinforce anti-malware defenses

* Expand the breadth and depth of a
forensic investigation involving malware

* Windows and web malware is particularly
relevant

Copyright 2009-2012 Lenny Zeltser

Great, we learned a bunch of details about a
malware sample. What’s the point? My goal was
not to teach you about this particular trojan’s
capabilities. Instead, | wanted to use it as the
context for introducing you to the key concepts
behind reverse-engineering malicious software.

The results of malware analysis are very useful for
security, systems, and network professionals. The
findings can help during incident response and
forensic investigation. They can also help you fine-
tune your defensive mechanisms, and help you
create intrusion detection signatures for locating
the specimen across your enterprise.

31



We employed several techniques to
understanding key characteristics.

Observing behavior

Interacting with the specimen

Molding the lab environment

Starting code analysis with strings

Setting memory access breakpoints

Copyright 2009-2012 Lenny Zeltser

The general malware analysis approach, which |
described in this presentation, included behavioral and
code analysis phases.

We began by observing the specimen’s behavior in an
isolated lab using several monitoring tools. We used
our observations to determine how to interact with the
trojan, which produced additional results. We were
able to evoke additional malicious characteristics by
gradually molding the laboratory environment to match
the world within which the specimen expected to
operate.

Armed with an initial understanding of the program’s
capabilities, we employed code analysis to further
understand the program’s characteristics. We began
this phase by looking how the program uses interesting
strings, and employed memory access breakpoints to
identify areas of the code worth examining further.

The best way to reinforce the techniques | discussed
here is to try the analysis on your own. This document
includes links to the tools | used. You can also
download a copy of the trojan on the website that
hosts this presentation and the corresponding webcast:
http://tinyurl.com/malcast. The full version of the URL
is: http://zeltser.com/reverse-malware/malware-
analysis-webcast.html.

32


http://tinyurl.com/malcast
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html
http://zeltser.com/reverse-malware/malware-analysis-webcast.html

The reverse-engineering cheat
sheet summarizes the approach.

http://tinyurl.com/reverse-malware-sheet

Reverse-Engineering Cheat Sheet
By Leany Zeltzer § Leam to Turn Malware Inside-Out
http:/ /www.zelts er.com /reverse-malware
General Approach
1. Setupa controlled, isolated laboratory in

which to examine the malware specimen,

Y

. Perform behavioral analysis to examine the
specimen’s interactions with its environment.

w

. Perform staticcode analysis to further
understand the specimen’s inner-workings.

-

. Perform dynamiccode analysisto understand
the more difficult aspects of the code.

w

. Ifnecessary, unpack the specimen.
Repeatsteps2, 3, and 4 (order may vary) until
analysis objectives are met.

7. Documentfindings and clean-upthe

laboratory for future analysis.

Be ready to reverttogood state via dd, VMware

snapshots, CareRestore, Ghost, SteadyState, etc.

Monitorlocal (Process Manitor, Process Explorer)

and network (Wireshark, tcpdump) interactions.

o

Show names window Shift+Fs
Display function’s flow chart F12
Display graph of function calls Ctrl+F12
Goto program’s entry point CtrleE
Goto specific address G
Rename avariable or function N
show listing of names ctrlet
Display listing of segments Ctrlss
Show cross-references  Select function name
toselected function » Cerlex
Show stack of current function e
Stepintoinstruction 7
Step overinstruction 8
Execute till next breakpoint o
Execute till next return Ctrl+Fg
Show previous/next executed instruction - / +
Return to previous view -
Show memory map Altsh
Follow expression inview ctrlsG

Totry unpacking quickly, infect the system and
dump from memory via LardPE or OllyDump.

For more surgical unpacking, locate the Original
Entry Point (OEP) after the unpacker executes.

If cannot unpack cleanly, examine the packed
specimen viadynamiccode analysis while it runs.
When unpackingin OllyDbg, try SFX (bytewise) and
OllyDump'’s “Find OEP by Section Hop”.

Conceal OllyDbg via HideOD and OliyAdvanced.
AJMP or CALL to EAX may indicate the OEP,
passibly preceded by POPA or POPAD.

Look out for tricky jumps via SEH, RET, CALL, etc.

If the packer uses SEH, anticipate OEP by tracking
stack areas used to store the packers handlers.
Decode protected data by examining results of the
decoding function via dynamic code analysis.
Correct PE header problems with XPELister,
LordPE, ImpREC, PEID, etc.

Toget closerto OEP, try breaking on unpacker’s
calls to LoadLibraryA or GetProcAddress.

Common xB6 Registers and Uses

Detect major local changes (RegShot, Autoruns). Insert comment P EAX Addition, multiplication, function results
Redirect network traffic {hosts file, NS, Honeyd). Follow jump or call in view Enter ECX Counter
howlction ot T ”

Copyright 2009-2012 Lenny Zeltser

To help you master malware reverse-engineering
skills, | created a one-page cheat sheet, which you
can download and customize freely. It’s available at
http://tinyurl.com/reverse-malware-sheet. The full
version of the URL is:
http://zeltser.com/reverse-malware/reverse-
malware-cheat-sheet.html.

You may also find my other security cheat sheets
useful. You’ll find them at:
http://zeltser.com/cheat-sheets.

33


http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://tinyurl.com/reverse-malware-sheet
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html
http://zeltser.com/cheat-sheets
http://zeltser.com/cheat-sheets
http://zeltser.com/cheat-sheets

The FOR610 course at SANS Institute
teaches to turn malware inside-out.

* Visit http://LearnREM.com
* Las Vegas, September 2012
* Prague, November 2012

* Other SANS conferences

* On-line on demand

* 10% discount code:
COINS-LZ

Copyright 2009-2011 Lenny Zeltser

My hope is that you’ll find this topic as fascinating
as | do. If you’d like to learn more about how to
reverse-engineer malware, consider taking my
SANS Institute course called Reverse-Engineering
Malware: Malware Analysis Tools and Techniques
(FOR610), and you can read all about it at:
http://LearnREM.com.

The course teaches how to understand key
characteristics of malware that runs on or targets
Microsoft Windows systems. This includes both
executable files compiled to run natively on
Windows, as well as browser-based malware, such
as malicious JavaScript or Flash files. The course
makes use of the tools installed on REMnux, as well
as those that run on Microsoft Windows.

34


http://learnrem.com/

Lenny Zeltser

blog.zeltser.com
twitter.com/lennyzeltser

Copyright 2012 Lenny Zeltser

If you want to keep an eye on my research and
activities, take a look at blog.zeltser.com. I’'m also
on Twitter at twitter.com/lennyzeltser.

A bit about me:

I’'m a seasoned IT professional with a strong
background in information security and business
management. As a product management director
at NCR Corporation, | focus on safeguarding IT
operations of small and midsize businesses.
Before NCR, | led an enterprise security
consulting team at a major IT hosting provider.

My most recent work has focused on malware
defenses and cloud-based services. | teach how
to analyze and combat malware at SANS
Institute, where | am a senior faculty member. |
also participate as a Board of Directors member
at SANS Technology Institute and volunteer as an
incident handler at the Internet Storm Center.

| often speak on security and related business
topics at conferences and industry events, write
articles, and have co-authored books on
forensics, network security and malware.

35


http://blog.zeltser.com/
http://twitter.com/lennyzeltser
http://twitter.com/lennyzeltser

